Numérotation des nombres rationnels

Un ensemble E est dit dénombrable si et seulement si il existe une bijection entre l'ensemble $\mathbb N$ des entiers naturels et E. Cette bijection permet alors de numéroter les éléments de E.

Partie I

- 1. Montrer que les ensembles \mathbb{N}^* et $\mathcal{P} = \{2k/k \in \mathbb{N}\}$ sont dénombrables.
- 2. Dans cette question, on désire établir que \mathbb{Z} est dénombrable.

Pour cela on introduit l'application $\varphi: \mathbb{N} \to \mathbb{Z}$ définie par :

$$\varphi(n) = n/2$$
 si n est pair et $\varphi(n) = -(n+1)/2$ si n est impair.

- 2.a Calculer $\varphi(n)$ pour n allant de 0 à 5.
- 2.b Montrer que l'application φ est bien définie.
- 2.c Etablir que φ est bijective.
- 3. Dans cette question, on désire établir que \mathbb{N}^2 est dénombrable. Pour cela on introduit l'application $\varphi : \mathbb{N}^2 \to \mathbb{N}^*$ définie par :

$$\varphi(p,q) = 2^p (2q+1)$$

- 3.a Montrer que φ est bien définie et qu'elle est injective.
- 3.b En observant, pour tout $n \in \mathbb{N}^*$, l'existence d'une plus grande puissance de 2 divisant n, établir que φ est surjective.
- 3.c Conclure que \mathbb{N}^2 est dénombrable et qu'il en est de même de \mathbb{Z}^2 .
- 4. Dans cette question, on désire établir que Q est dénombrable.
- 4.a Exhiber une injection de \mathbb{N} dans \mathbb{Q} .
- 4.b On appelle représentant irréductible d'un nombre rationnel r l'unique fraction irréductible p/q égale à r avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$.

Observer que l'application $\varphi: \mathbb{Q} \to \mathbb{Z} \times \mathbb{N}^*$ qui à $r \in \mathbb{Q}$ associe le couple $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ avec p/q le représentant irréductible est injective. Est-elle surjective ?

4.c Former une injection de \mathbb{Q} dans \mathbb{N} .

On peut alors conclure que $\mathbb Q$ est dénombrable à l'aide du théorème de Cantor-Bernstein dont la démonstration est l'objet de la partie suivante.

Partie II

On veut démontrer le résultat suivant :

« Etant donnés deux ensembles E et F, s'il existe une injection de E dans F et une injection de F dans E alors il existe une bijection entre E et F. »

Supposons que $f: E \to F$ et $g: F \to E$ soient deux applications injectives.

On forme $h = g \circ f : E \to E$ et on note $R = \mathcal{C}_{E}(\operatorname{Im} g)$.

- 1. On forme $\mathcal{P} = \{ M \in \mathcal{P}(E) / R \subset M \text{ et } h(M) \subset M \}$.
- 1.a Observer que l'ensemble \mathcal{P} est non vide.
- 1.b Soit $M\in\mathcal{P}$. Montrer que $h(R)\subset h(M)$ et que $h(h(M))\subset h(M)$. En déduire que $R\cup h(M)\in\mathcal{P}$.
- 2. On forme $A = \bigcap_{M \in \mathcal{P}} M$. On remarque que A est inclus dans tout ensemble M appartenant à \mathcal{P} .
- 2.a Montrer que $A \in \mathcal{P}$.
- 2.b En exploitant II.1.b, établir que $A \subset R \cup h(A)$ puis que $A = R \cup h(A)$.

- 2.c Montrer que $g^{-1}(A) = f(A)$.
- 3. On pose A' = f(A), $B = \mathcal{C}_E A$ et $B' = g^{-1}(B)$. On considère ensuite les applications $f': A \to A'$ et $g': B' \to B$ induites par f et g.
- 3.a Observer que f' et g' sont bijectives.
- 3.b Montrer que $B' = C_F A'$
- 4. On introduit enfin l'application $\varphi: E \to F$ définie par :

$$\varphi(x) = \begin{cases} f'(x) \text{ si } x \in A \\ g'^{-1}(x) \text{ sinon} \end{cases}.$$

Montrer que φ est bijective.