Nombre de surjections

Dans tout le problème, n et p désignent des entiers naturels.

Partie I

Pour tout $p \in \mathbb{N}$ et $k \in \mathbb{Z}$, on note $\binom{p}{k}$ le nombre de parties à k éléments d'un ensemble à p éléments.

- 1. Rappeler l'expression de $\binom{p}{k}$ à l'aide de nombres factoriels lorsque $k \in \{0,...,p\}$. Que vaut $\binom{p}{k}$ pour k>p ou k<0?
- 2. Démontrer, pour tout $0 \le k \le p+1$, la relation $\binom{p}{k} + \binom{p}{k-1} = \binom{p+1}{k}$.
- 3. Etablir, pour tout $0 \le k \le p+1$, la relation $\binom{p}{k-1} = \frac{k}{p+1} \binom{p+1}{k}$
- 4. On pose $\sigma(n,p) = \sum_{k=0}^{p} (-1)^{k-p} {p \choose k} k^n$.
- 4.a Calculer $\sigma(0,0)$ et $\sigma(0,p)$ pour p > 0.
- 4.b Montrer: $\sigma(n, p+1) = -\sigma(n, p) + \frac{1}{p+1}\sigma(n+1, p+1)$.

Partie II

On note S(n,p) le nombre d'applications surjectives au départ d'un ensemble à n éléments et à l'arrivée dans un ensemble à p éléments.

- 1. Calculer S(n,n) et S(n,p) pour p > n.
- 2. On considère E un ensemble à n+1 éléments et F un ensemble à p+1 éléments.
- 2.a Combien y a-t-il de surjections $f: E \to F$ dont la restriction au départ de $E \setminus \{a\}$ soit encore surjective ?
- 2.b Combien y a-t-il de surjections $f: E \to F$ dont la restriction au départ de $E \setminus \{a\}$ n'est pas surjective ?
- 2.c En déduire la relation : S(n+1, p+1) = (p+1)(S(n, p+1) + S(n, p)).
- 3. Montrer que $S(n, p) = \sigma(n, p)$.

Partie III

E désigne un ensemble à n éléments.

On appelle partition en $\,p\,$ classes d'un ensemble $\,E\,$, toute famille $\,(A_1,\ldots,A_p)\,$ formée de parties de $\,E\,$ telles que $\,\forall k\in\{1,\ldots,p\}, A_k\neq\varnothing\,,\,\,\bigcup_{1\leq k\leq m}A_k=E\,$ et $\,\forall k,\ell\in\{1,\ldots,p\}, k\neq\ell\Rightarrow A_k\cap A_\ell=\varnothing\,.$

- 1. Soit $(A_1, ..., A_p)$ une partition à p classes de E.
- 1.a Montrer que $\forall x \in E$, $\exists ! k \in \{1,...,p\}$ tel que $x \in A_k$.

 On pose alors f(x) = k ce qui définit une application $f: E \to \{1,...,p\}$.
- 1.b Montrer que f est surjective.

- 2. Inversement, soit $f: E \to \{1, \ldots, p\}$ surjective. On pose, pour tout $k \in \{1, \ldots, p\}$, $A_k = f^{-1}(\{k\})$. Montrer que (A_1, \ldots, A_p) est une partition à p classes de E.
- 3. Déduire de ce qui précède le nombre de partitions à p classes de E.