Correction

d'après Centrale TSI 1997

Partie I

1.a \mathcal{S} et \mathcal{A} sont bien des sous-espaces vectoriels de $M_3(\mathbb{R})$.

 $\mathrm{Si}\ M\in\mathcal{S}\cap\mathcal{A}\ \mathrm{alors}\ ^tM=M\ \mathrm{et}\ ^tM=-M\ \mathrm{donc}\ M=0\,.\ \mathrm{Par\ suite}\ \mathcal{S}\cap\mathcal{A}=\left\{0\right\}.$

Soit $M \in M_3(\mathbb{R})$. Posons $S = \frac{1}{2}(M + t^t M)$ et $A = \frac{1}{2}(M - t^t M)$.

On a $S \in \mathcal{S}$, $A \in \mathcal{A}$ et M = S + A donc $\mathcal{S} + \mathcal{A} = M_3(\mathbb{R})$.

Finalement S et A sont supplémentaires dans $M_3(\mathbb{R})$.

1.b
$$S = \left\{ \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} / a, b, c, d, e, f \in \mathbb{R} \right\} = \operatorname{Vect}(S_1, \dots, S_6)$$

 $\text{avec}\ \ S_1=E_1, S_2=E_4, S_3=E_9, S_4=E_2+E_4, S_5=E_3+E_7\ \ \text{et}\ \ S_6=E_6+E_8\,.$

La famille $(S_1,...,S_6)$ est clairement libre et donc forme une base de S.

Par suite $\dim S = 6$ et par supplémentarité $\dim A = 3$.

$$1.\mathbf{c} \qquad \mathcal{T} = \left\{ \begin{pmatrix} a & b & c \\ k & \ell & m \\ r & s & -a - \ell \end{pmatrix} / a, b, c, k, \ell, m, r, s, -a - \ell \in \mathbb{R} \right\} = \mathrm{Vect}(T_1, \ldots, T_8) \; .$$

avec $T_1 = E_1 - E_9$, $T_2 = E_2$, $T_3 = E_3$, $T_4 = E_4$, $T_5 = E_5 - E_9$, $T_6 = E_6$, $T_7 = E_7$ et $T_8 = E_8$.

 $\mathcal T$ est donc un sous-espace vectoriel de $M_3(\mathbb R)$ et comme la famille (T_1,\ldots,T_8) est clairement libre, $\dim \mathcal T=8$.

2.a Soit $M,N\in M_3(\mathbb{R})$ et $\lambda,\mu\in\mathbb{R}$. Pour tout $i\in\{1,...,8\}$, on a $s_i(\lambda M+\mu N)=\lambda s_i(M)+\mu s_i(N)$. Par suite λ est linéaire.

2.c En notant $L_1,...,L_8$ les lignes de la matrice ci-dessus, on observe que $L_1+L_2+L_3=L_4+L_5+L_6$. Par suite $\operatorname{rg} A=\operatorname{rg}(L_1,...,L_8)=\operatorname{rg}(L_2,...,L_8)$.

Supposons $\lambda_2 L_2 + \dots + \lambda_8 L_8 = 0$:

$$\text{On obtient le système} \begin{cases} \lambda_4 + \lambda_7 = 0 \\ \lambda_5 = 0 \\ \lambda_6 + \lambda_8 = 0 \\ \lambda_2 + \lambda_4 = 0 \\ \lambda_2 + \lambda_5 + \lambda_7 + \lambda_8 = 0 \text{ qui donne aisément} : \begin{cases} \lambda_5 = 0 \\ \lambda_3 = 0 \\ \lambda_7 = 0 \\ \lambda_4 = 0 \\ \lambda_2 + \lambda_6 = 0 \\ \lambda_3 + \lambda_4 + \lambda_8 = 0 \\ \lambda_3 + \lambda_5 = 0 \\ \lambda_3 + \lambda_7 = 0 \end{cases} \\ \lambda_6 = 0 \\ \lambda_8 = 0 \end{cases}$$

La famille $(L_2,...,L_8)$ étant libre : $\operatorname{rg} A = \operatorname{rg}(L_2,...,L_8) = 7$.

- 2.d Par le théorème du rang : $\dim \ker \varphi = \dim M_3(\mathbb{R}) \operatorname{rg} \varphi = 2$.
- 3.a W = Vect((1,...,1)) est un sous-espace vectoriel de \mathbb{R}^8 et $\mathcal{M} = \varphi^{-1}(W)$ donc \mathcal{M} est un sous-espace vectoriel car image réciproque d'un sous-espace vectoriel par une application linéaire.
- 3.b $\mathcal{M} \cap \mathcal{T}$ et \mathcal{V} sont bien des sous-espaces vectoriels de \mathcal{M} . Soit $M \in \mathcal{M} \cap \mathcal{T} \cap \mathcal{V}$.

Puisque $M \in \mathcal{V}$, on peut écrire $M = \lambda J$ avec $\lambda \in \mathbb{R}$.

Puisque $M \in \mathcal{T}$, on a $\lambda + \lambda + \lambda = 0$ donc $\lambda = 0$ puis M = 0. Ainsi $\mathcal{M} \cap \mathcal{T} \cap \mathcal{V} = \{0\}$.

Soit $M \in \mathcal{M}$. Posons $\lambda = s_7(M)/3$ et $N = M - \lambda J$ de sorte que $N \in \mathcal{T}$.

On a $M = N + \lambda J$ avec $N \in \mathcal{M} \cap \mathcal{T}$ et $\lambda J \in \mathcal{V}$. Ainsi $(\mathcal{M} \cap \mathcal{T}) + \mathcal{V} = \mathcal{M}$.

Finalement $\mathcal{M} \cap \mathcal{T}$ et \mathcal{V} sont supplémentaires dans \mathcal{M} .

3.c Les matrices magiques de trace nulle correspondent bien aux éléments de $\ker \varphi$.

Par suite dim $\mathcal{M} \cap \mathcal{T} = 2$ et comme dim $\mathcal{V} = 1$ on a par supplémentarité dim $\mathcal{M} = 3$.

- 4.a $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$ convient.
- 4.b $B = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$ convient.
- 4.c Considérons la famille (A, B, J).

Supposons
$$\alpha A + \beta B + \gamma J = 0$$
. On a
$$\begin{pmatrix} \alpha + \gamma & -\alpha - \beta + \gamma & \beta + \gamma \\ -\alpha + \beta + \gamma & \gamma & \alpha - \beta + \gamma \\ -\beta + \gamma & \alpha + \beta + \gamma & -\alpha + \gamma \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

qui donne aisément $\alpha = \beta = \gamma = 0$.

La famille (A, B, J) est libre et formée de $3 = \dim \mathcal{M}$ éléments de \mathcal{M} , c'est donc une base de \mathcal{M} .

5.
$$\begin{cases} \alpha + \gamma = 1 \\ -\alpha - \beta + \gamma = 2 \\ \beta + \gamma = 3 \end{cases} \begin{cases} \gamma = 2 \\ \alpha = -1 \\ \beta = 1 \end{cases}.$$

La matrice cherchée est $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 2 & 0 \\ 1 & 2 & 3 \end{pmatrix}$.